Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.639
Filtrar
1.
Sci Rep ; 14(1): 2490, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291230

RESUMO

Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system. This is achieved by introducing a novel transgenic mouse strain overexpressing α-Syn under the TH-promoter within the senescence-accelerated SAMP8 (P8) genetic background. Behavioral assessments, conducted at both 10 and 16 months of age, unveil motor impairments exclusive to P8 α-SynTg mice, a phenomenon conspicuously absent in α-SynTg mice. These findings suggest a synergistic interplay between heightened α-Syn levels and the aging process, resulting in motor deficits. These motor disturbances correlate with reduced dopamine (DA) levels, increased DA turnover, synaptic terminal loss, and notably, the depletion of dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus. Furthermore, P8 α-SynTg mice exhibit alterations in gut transit time, mirroring early PD symptoms. In summary, P8 α-SynTg mice effectively replicate parkinsonian phenotypes by combining α-Syn transgene expression with accelerated aging. This model offers valuable insights into the understanding of PD and serves as a valuable platform for further research.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Camundongos , Envelhecimento/genética , Envelhecimento/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Transgênicos , Degeneração Neural/patologia , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
2.
Exp Neurol ; 374: 114704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281587

RESUMO

The clinical manifestation of Parkinson's disease (PD) appears when neurodegeneration is already advanced, compromising the efficacy of disease-modifying treatment approaches. Biomarkers to identify the early stages of PD are therefore of paramount importance for the advancement of the therapy of PD. In the present study, by using a mouse model of PD obtained by subchronic treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the clearance inhibitor probenecid (MPTPp), we identified prodromal markers of PD by combining in vivo positron emission tomography (PET) imaging and ex vivo immunohistochemistry. Longitudinal PET imaging of the dopamine transporter (DAT) by [18F]-N-(3-fluoropropyl)-2ß-carboxymethoxy-3ß-(4-iodophenyl) nortropane ([18F]-FP-CIT), and brain glucose metabolism by 2-deoxy-2-[18F]-fluoroglucose ([18F]-FDG) were performed before MPTPp treatment and after 1, 3, and 10 MPTPp administrations, in order to assess relation between dopamine neuron integrity and brain connectivity. The results show that in vivo [18F]-FP-CIT in the dorsal striatum was not modified after the first administration of MPTPp, tended to decrease after 3 administrations, and significantly decreased after 10 MPTPp administrations. Post-mortem immunohistochemical analyses of DAT and tyrosine hydroxylase (TH) in the striatum showed a positive correlation with [18F]-FP-CIT, confirming the validity of repeated MPTPp-treated mice as a model that can reproduce the progressive pathological changes in the early phases of PD. Analysis of [18F]-FDG uptake in several brain areas connected to the striatum showed that metabolic connectivity was progressively disrupted, starting from the first MPTPp administration, and that significant connections between cortical and subcortical regions were lost after 10 MPTPp administrations, suggesting an association between dopamine neuron degeneration and connectivity disruption in this PD model. The results of this study provide a relevant model, where new drugs that can alleviate neurodegeneration in PD could be evaluated preclinically.


Assuntos
Doença de Parkinson , Tropanos , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Dopamina/metabolismo , Probenecid/farmacologia , Probenecid/uso terapêutico , Neurônios Dopaminérgicos/patologia , Fluordesoxiglucose F18/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Degeneração Neural/diagnóstico por imagem , Degeneração Neural/patologia
3.
Eur J Neurol ; 31(2): e16145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975799

RESUMO

BACKGROUND AND PURPOSE: The role of GGC repeat expansions within NOTCH2NLC in Parkinson's disease (PD) and the substantia nigra (SN) dopaminergic neuron remains unclear. Here, we profile the NOTCH2NLC GGC repeat expansions in a large cohort of patients with PD. We also investigate the role of GGC repeat expansions within NOTCH2NLC in the dopaminergic neurodegeneration of SN. METHODS: A total of 2,522 patients diagnosed with PD and 1,085 health controls were analyzed for the repeat expansions of NOTCH2NLC by repeat-primed PCR and GC-rich PCR assay. Furthermore, the effects of GGC repeat expansions in NOTCH2NLC on dopaminergic neurons were investigated by using recombinant adeno-associated virus (AAV)-mediated overexpression of NOTCH2NLC with 98 GGC repeats in the SN of mice by stereotactic injection. RESULTS: Four PD pedigrees (4/333, 1.2%) and three sporadic PD patients (3/2189, 0.14%) were identified with pathogenic GGC repeat expansions (larger than 60 GGC repeats) in the NOTCH2NLC gene, while eight PD patients and one healthy control were identified with intermediate GGC repeat expansions ranging from 41 to 60 repeats. No significant difference was observed in the distribution of intermediate NOTCH2NLC GGC repeat expansions between PD cases and controls (Fisher's exact test p-value = 0.29). Skin biopsy showed P62-positive intranuclear NOTCH2NLC-polyGlycine (polyG) inclusions in the skin nerve fibers of patient. Expanded GGC repeats in NOTCH2NLC produced widespread intranuclear and perinuclear polyG inclusions, which led to a severe loss of dopaminergic neurons in the SN. Consistently, polyG inclusions were presented in the SN of EIIa-NOTCH2NLC-(GGC)98 transgenic mice and also led to dopaminergic neuron loss in the SN. CONCLUSIONS: Overall, our findings provide strong evidence that GGC repeat expansions within NOTCH2NLC contribute to the pathogenesis of PD and cause degeneration of nigral dopaminergic neurons.


Assuntos
Doença de Parkinson , Animais , Humanos , Camundongos , Neurônios Dopaminérgicos/patologia , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Camundongos Transgênicos , Degeneração Neural/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/patologia , Expansão das Repetições de Trinucleotídeos
4.
Proc Natl Acad Sci U S A ; 120(47): e2300308120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37976261

RESUMO

Spinal muscular atrophy (SMA), the top genetic cause of infant mortality, is characterized by motor neuron degeneration. Mechanisms underlying SMA pathogenesis remain largely unknown. Here, we report that the activity of cyclin-dependent kinase 5 (Cdk5) and the conversion of its activating subunit p35 to the more potent activator p25 are significantly up-regulated in mouse models and human induced pluripotent stem cell (iPSC) models of SMA. The increase of Cdk5 activity occurs before the onset of SMA phenotypes, suggesting that it may be an initiator of the disease. Importantly, aberrant Cdk5 activation causes mitochondrial defects and motor neuron degeneration, as the genetic knockout of p35 in an SMA mouse model rescues mitochondrial transport and fragmentation defects, and alleviates SMA phenotypes including motor neuron hyperexcitability, loss of excitatory synapses, neuromuscular junction denervation, and motor neuron degeneration. Inhibition of the Cdk5 signaling pathway reduces the degeneration of motor neurons derived from SMA mice and human SMA iPSCs. Altogether, our studies reveal a critical role for the aberrant activation of Cdk5 in SMA pathogenesis and suggest a potential target for therapeutic intervention.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Muscular Espinal , Animais , Humanos , Camundongos , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/metabolismo , Degeneração Neural/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
5.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894921

RESUMO

Appropriate animal models, mimicking conditions of both health and disease, are needed to understand not only the biology and the physiology of neurons and other cells under normal conditions but also under stress conditions, like nerve injuries and neuropathy. In such conditions, understanding how genes and different factors are activated through the well-orchestrated programs in neurons and other related cells is crucial. Knowledge about key players associated with nerve regeneration intended for axonal outgrowth, migration of Schwann cells with respect to suitable substrates, invasion of macrophages, appropriate conditioning of extracellular matrix, activation of fibroblasts, formation of endothelial cells and blood vessels, and activation of other players in healthy and diabetic conditions is relevant. Appropriate physical and chemical attractions and repulsions are needed for an optimal and directed regeneration and are investigated in various nerve injury and repair/reconstruction models using healthy and diabetic rat models with relevant blood glucose levels. Understanding dynamic processes constantly occurring in neuropathies, like diabetic neuropathy, with concomitant degeneration and regeneration, requires advanced technology and bioinformatics for an integrated view of the behavior of different cell types based on genomics, transcriptomics, proteomics, and imaging at different visualization levels. Single-cell-transcriptional profile analysis of different cells may reveal any heterogeneity among key players in peripheral nerves in health and disease.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Traumatismos dos Nervos Periféricos , Ratos , Animais , Células Endoteliais/metabolismo , Ratos Wistar , Nervos Periféricos/metabolismo , Neuropatias Diabéticas/metabolismo , Células de Schwann/metabolismo , Degeneração Neural/patologia , Regeneração Nervosa/fisiologia , Axônios/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Diabetes Mellitus/metabolismo
6.
Neuropeptides ; 102: 102386, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856900

RESUMO

Amyotrophic lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motor neurons in the central nervous system. Mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) account for approximately in 20% of familial ALS cases. The pathological mechanisms underlying the toxicity induced by mutated SOD1 are still unknown. However, it has been hypothesized that oxidative stress (OS) has a crucial role in motor neuron degeneration in ALS patients. Moreover, it has been described that SOD1 mutation interferes expression of nuclear factor erythroid 2-related factor 2 (Nrf2), a protective key modulator against OS and reactive oxygen species (ROS) formation. The protective effect of pituitary adenylate cyclase-activating peptide (PACAP) has been demonstrated in various neurological disorders, including ALS. Some of its effects are mediated by the stimulation of an intracellular factor known as activity-dependent protein (ADNP). The role of PACAP-ADNP axis on mutated SOD1 motor neuron degeneration has not been explored, yet. The present study aimed to investigate whether PACAP prevented apoptotic cell death induced by growth factor deprivation through ADNP activation and whether the peptidergic axis can counteract the OS insult. By using an in vitro model of ALS, we demonstrated that PACAP by binding to PAC1 receptor (PAC1R) prevented motor neuron death induced by serum deprivation through induction of the ADNP expression via PKC stimulation. Furthermore, we have also demonstrated that the PACAP/ADNP axis counteracted ROS formation by inducing translocation of the Nfr2 from the cytoplasm to the nucleus. In conclusion, our study provides new insights regarding the protective role of PACAP-ADNP in ALS.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Mutação , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/farmacologia
8.
Neurosci Lett ; 816: 137510, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802418

RESUMO

Parkinson's disease (PD) is characterized by the loss of nigrostriatal dopamine (DA) neurons and the presence of alpha-synuclein (αSyn)-positive Lewy body (LB) pathology. In this study, we attempted to recapitulate both these features in a novel in vitro model for PD. To achieve this, we combined the αSyn pre-formed fibril (PFF)-seeded LB-like pathology with 6-hydroxydopamine (6-OHDA)-induced mitochondrial toxicity in mouse embryonic midbrain cultures. To pilot the model for therapeutics testing, we assessed the effects of cerebral dopamine neurotrophic factor (CDNF) on αSyn aggregation and neuron survival. PFF-seeded pathology did not lead to DA neuron loss even with the highest dose of PFFs. The combination of PFFs and 6-OHDA did not trigger additional neurodegeneration or LB-like pathology and instead presented DA neuron loss to a similar extent as with 6-OHDA only. CDNF did not affect the PFF-seeded αSyn pathology or the DA neuron survival in the combination model but showed a trend toward neuroprotection in the 6-OHDA-only cultures.


Assuntos
Doença de Parkinson , Sinucleinopatias , Camundongos , Animais , alfa-Sinucleína/metabolismo , Oxidopamina/toxicidade , Dopamina , Estudos de Viabilidade , Doença de Parkinson/patologia , Sinucleinopatias/patologia , Degeneração Neural/patologia , Mesencéfalo/metabolismo
9.
J Neural Eng ; 20(5)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37774693

RESUMO

Objective.To simulate progressive motor neuron loss and collateral reinnervation in motor neuron diseases (MNDs) by developing a dynamic muscle model based on human single motor unit (MU) surface-electromyography (EMG) recordings.Approach.Single MU potentials recorded with high-density surface-EMG from thenar muscles formed the basic building blocks of the model. From the baseline MU pool innervating a muscle, progressive MU loss was simulated by removal of MUs, one-by-one. These removed MUs underwent collateral reinnervation with scenarios varying from 0% to 100%. These scenarios were based on a geometric variable, reflecting the overlap in MU territories using the spatiotemporal profiles of single MUs and a variable reflecting the efficacy of the reinnervation process. For validation, we tailored the model to generate compound muscle action potential (CMAP) scans, which is a promising surface-EMG method for monitoring MND patients. Selected scenarios for reinnervation that matched observed MU enlargements were used to validate the model by comparing markers (including the maximum CMAP and a motor unit number estimate (MUNE)) derived from simulated and recorded CMAP scans in a cohort of 49 MND patients and 22 age-matched healthy controls.Main results.The maximum CMAP at baseline was 8.3 mV (5th-95th percentile: 4.6 mV-11.8 mV). Phase cancellation caused an amplitude drop of 38.9% (5th-95th percentile, 33.0%-45.7%). To match observations, the geometric variable had to be set at 40% and the efficacy variable at 60%-70%. The Δ maximum CMAP between recorded and simulated CMAP scans as a function of fitted MUNE was -0.4 mV (5th-95th percentile = -4.0 - +2.4 mV).Significance.The dynamic muscle model could be used as a platform to train personnel in applying surface-EMG methods prior to their use in clinical care and trials. Moreover, the model may pave the way to compare biomarkers more efficiently, without directly posing unnecessary burden on patients.


Assuntos
Doença dos Neurônios Motores , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Potenciais de Ação/fisiologia , Neurônios Motores/fisiologia , Eletromiografia/métodos , Doença dos Neurônios Motores/diagnóstico , Doença dos Neurônios Motores/patologia , Degeneração Neural/patologia
10.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446051

RESUMO

Tau aggregation is central to the pathogenesis of a large group of neurodegenerative diseases termed tauopathies, but it is still unclear in which way neurons respond to tau pathology and how tau accumulation leads to neurodegeneration. A striking neuron-specific response to tau pathology is presented by granulovacuolar degeneration bodies (GVBs), lysosomal structures that accumulate specific cargo in a dense core. Here we employed different tau aggregation models in primary neurons to investigate which properties of pathological tau assemblies affect GVB accumulation using a combination of confocal microscopy, transmission electron microscopy, and quantitative automated high-content microscopy. Employing GFP-tagged and untagged tau variants that spontaneously form intraneuronal aggregates, we induced pathological tau assemblies with a distinct subcellular localization, morphology, and ultrastructure depending on the presence or absence of the GFP tag. The quantification of the GVB load in the different models showed that an increased GVB accumulation is associated with the untagged tau aggregation model, characterized by shorter and more randomly distributed tau filaments in the neuronal soma. Our data indicate that tau aggregate structure and/or subcellular localization may be key determinants of GVB accumulation.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau/metabolismo , Tauopatias/patologia , Neurônios/metabolismo , Degeneração Neural/patologia , Doença de Alzheimer/patologia , Encéfalo/metabolismo
11.
Cell Signal ; 110: 110807, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37463628

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative condition, triggered by various factors causing the degeneration of upper and lower motor neurons, resulting in progressive muscle wasting, paralysis, and death. Multiple in vivo and in vitro models have been established to unravel the molecular events leading to the deterioration of motor neurons in ALS. The canonical and non-canonical Wnt signaling pathway has been implicated to play a crucial role in the progression of neurodegenerative disorders. This review discusses the role of Wnt signaling in the reported causes of ALS such as oxidative stress, mitochondrial dysfunction, autophagy, and apoptosis. Mutations in ALS-associated genes such as SOD1, C9orf72, TDP43, FUS, and OPTN cause an imbalance in neuronal integrity and homeostasis leading to motor neuron demise. Wnt signaling is also observed to play a crucial role in the muscle sparing of oculomotor neurons. The non-canonical Wnt/Ca2+ pathway which regulates intrinsic electrophysiological properties and mobilizes calcium ions to maintain neuronal integrity has been found to be altered in the stem cell-derived ALS model. Thus, the interplay of dysregulated canonical and non-canonical Wnt pathways in multiple motor neuron disease models has shown that Wnt contributes to disease progression indicating it to be utilized as a potential target for ALS.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Animais , Esclerose Amiotrófica Lateral/metabolismo , Via de Sinalização Wnt , Neurônios Motores/metabolismo , Estresse Oxidativo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Modelos Animais de Doenças
12.
Toxicol Pathol ; 51(4): 176-204, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37489508

RESUMO

Certain biopharmaceutical products consistently affect dorsal root ganglia, trigeminal ganglia, and/or autonomic ganglia. Product classes targeting ganglia include antineoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, and anti-nerve growth factor agents. This article outlines "points to consider" for sample collection, processing, evaluation, interpretation, and reporting of ganglion findings; these points are consistent with published best practices for peripheral nervous system evaluation in nonclinical toxicity studies. Ganglion findings often occur as a combination of neuronal injury (e.g., degeneration, necrosis, and/or loss) and/or glial effects (e.g., increased satellite glial cell cellularity) with leukocyte accumulation (e.g., mononuclear cell infiltration or inflammation). Nerve fiber degeneration and/or glial reactions may be seen in nerves, dorsal spinal nerve roots, spinal cord, and occasionally brainstem. Interpretation of test article (TA)-associated effects may be confounded by incidental background changes or experimental procedure-related changes and limited historical control data. Reports should describe findings at these sites, any TA relationship, and the criteria used for assigning severity grades. Contextualizing adversity of ganglia findings can require a weight-of-evidence approach because morphologic changes of variable severity occur in ganglia but often are not accompanied by observable overt in-life functional alterations detectable by conventional behavioral and neurological testing techniques.


Assuntos
Gânglios Espinais , Sistema Nervoso Periférico , Humanos , Sistema Nervoso Periférico/patologia , Neurônios/patologia , Medula Espinal/patologia , Fibras Nervosas/patologia , Degeneração Neural/patologia
13.
Clin Neurol Neurosurg ; 232: 107871, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37413873

RESUMO

Hypertrophic olivary degeneration (HOD) is a rare condition caused by lesions of the dentato-rubro-olivary pathway, usually bilateral. We presented a case of a 64-year old male with HOD caused by a unilateral, posterior pontine cavernoma. The patient has not developed the typical palate myoclonus until recently. Isolated hand myoclonus with coexisting asterixis was present for years. This case shows unique HOD symptomatology and emphasizes the important role of MRI in the differential diagnosis of monomelic myoclonus.


Assuntos
Mioclonia , Núcleo Olivar , Masculino , Humanos , Pessoa de Meia-Idade , Núcleo Olivar/patologia , Degeneração Neural/patologia , Mioclonia/etiologia , Tremor/complicações , Ponte/patologia , Hipertrofia/patologia , Imageamento por Ressonância Magnética/efeitos adversos
14.
Neuron ; 111(16): 2523-2543.e10, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37321222

RESUMO

Toxic proteinaceous deposits and alterations in excitability and activity levels characterize vulnerable neuronal populations in neurodegenerative diseases. Using in vivo two-photon imaging in behaving spinocerebellar ataxia type 1 (Sca1) mice, wherein Purkinje neurons (PNs) degenerate, we identify an inhibitory circuit element (molecular layer interneurons [MLINs]) that becomes prematurely hyperexcitable, compromising sensorimotor signals in the cerebellum at early stages. Mutant MLINs express abnormally elevated parvalbumin, harbor high excitatory-to-inhibitory synaptic density, and display more numerous synaptic connections on PNs, indicating an excitation/inhibition imbalance. Chemogenetic inhibition of hyperexcitable MLINs normalizes parvalbumin expression and restores calcium signaling in Sca1 PNs. Chronic inhibition of mutant MLINs delayed PN degeneration, reduced pathology, and ameliorated motor deficits in Sca1 mice. Conserved proteomic signature of Sca1 MLINs, shared with human SCA1 interneurons, involved the higher expression of FRRS1L, implicated in AMPA receptor trafficking. We thus propose that circuit-level deficits upstream of PNs are one of the main disease triggers in SCA1.


Assuntos
Células de Purkinje , Ataxias Espinocerebelares , Camundongos , Humanos , Animais , Células de Purkinje/metabolismo , Parvalbuminas/metabolismo , Proteômica , Camundongos Transgênicos , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Cerebelo/metabolismo , Interneurônios/metabolismo , Degeneração Neural/patologia , Modelos Animais de Doenças , Ataxina-1 , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
15.
Acta Neuropathol ; 146(2): 227-244, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37347276

RESUMO

Parkinson´s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Aggravation of symptoms is mirrored by accumulation of protein aggregates mainly composed by alpha-synuclein in different brain regions, called Lewy bodies (LB). Previous studies have identified several molecular mechanisms as autophagy and inflammation playing a role in PD pathogenesis. Increased insights into mechanisms involved in early disease stages and driving the progression of the LB pathology are required for the development of disease-modifying strategies. Here, we aimed to elucidate disease stage-specific transcriptomic changes in brain tissue of well-characterized PD and control donors. We collected frontal cortex samples from 84 donors and sequenced both the coding and non-coding RNAs. We categorized our samples into groups based on their degree of LB pathology aiming to recapitulate a central aspect of disease progression. Using an analytical pipeline that corrected for sex, age at death, RNA quality, cell composition and unknown sources of variation, we found major disease stage-specific transcriptomic changes. Gene expression changes were most pronounced in donors at the disease stage when microscopic LB changes first occur in the sampled brain region. Additionally, we identified disease stage-specific enrichment of brain specific pathways and immune mechanisms. On the contrary, we showed that mitochondrial mechanisms are enriched throughout the disease course. Our data-driven approach also suggests a role for several poorly characterized lncRNAs in disease development and progression of PD. Finally, by combining genetic and epigenetic information, we highlighted two genes (MAP4K4 and PHYHIP) as candidate genes for future functional studies. Together our results indicate that transcriptomic dysregulation and associated functional changes are highly disease stage-specific, which has major implications for the study of neurodegenerative disorders.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Transcriptoma , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Corpos de Lewy/patologia , Encéfalo/patologia , Degeneração Neural/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
16.
Acta Neuropathol Commun ; 11(1): 90, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37269008

RESUMO

X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease) is a rare neuromuscular disorder characterized by adult-onset proximal muscle weakness and lower motor neuron degeneration. SBMA was the first human disease found to be caused by a repeat expansion mutation, as affected patients possess an expanded tract of CAG repeats, encoding polyglutamine, in the androgen receptor (AR) gene. We previously developed a conditional BAC fxAR121 transgenic mouse model of SBMA and used it to define a primary role for skeletal muscle expression of polyglutamine-expanded AR in causing the motor neuron degeneration. Here we sought to extend our understanding of SBMA disease pathophysiology and cellular basis by detailed examination and directed experimentation with the BAC fxAR121 mice. First, we evaluated BAC fxAR121 mice for non-neurological disease phenotypes recently described in human SBMA patients, and documented prominent non-alcoholic fatty liver disease, cardiomegaly, and ventricular heart wall thinning in aged male BAC fxAR121 mice. Our discovery of significant hepatic and cardiac abnormalities in SBMA mice underscores the need to evaluate human SBMA patients for signs of liver and heart disease. To directly examine the contribution of motor neuron-expressed polyQ-AR protein to SBMA neurodegeneration, we crossed BAC fxAR121 mice with two different lines of transgenic mice expressing Cre recombinase in motor neurons, and after updating characterization of SBMA phenotypes in our current BAC fxAR121 colony, we found that excision of mutant AR from motor neurons did not rescue neuromuscular or systemic disease. These findings further validate a primary role for skeletal muscle as the driver of SBMA motor neuronopathy and indicate that therapies being developed to treat patients should be delivered peripherally.


Assuntos
Atrofia Bulboespinal Ligada ao X , Camundongos , Humanos , Masculino , Animais , Idoso , Atrofia Bulboespinal Ligada ao X/metabolismo , Atrofia Bulboespinal Ligada ao X/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neurônios Motores/metabolismo , Camundongos Transgênicos , Fenótipo , Degeneração Neural/patologia
17.
Cells ; 12(11)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37296656

RESUMO

Motor Neuron Diseases (MND) are neurological disorders characterized by a loss of varying motor neurons resulting in decreased physical capabilities. Current research is focused on hindering disease progression by determining causes of motor neuron death. Metabolic malfunction has been proposed as a promising topic when targeting motor neuron loss. Alterations in metabolism have also been noted at the neuromuscular junction (NMJ) and skeletal muscle tissue, emphasizing the importance of a cohesive system. Finding metabolism changes consistent throughout both neurons and skeletal muscle tissue could pose as a target for therapeutic intervention. This review will focus on metabolic deficits reported in MNDs and propose potential therapeutic targets for future intervention.


Assuntos
Doença dos Neurônios Motores , Humanos , Doença dos Neurônios Motores/terapia , Doença dos Neurônios Motores/metabolismo , Neurônios Motores/patologia , Junção Neuromuscular/patologia , Músculo Esquelético/metabolismo , Degeneração Neural/patologia
18.
Brain Res ; 1814: 148449, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302570

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The main pathogenic features are the development and depositionof senile plaques and neurofibrillary tangles in brain. Recent developments in the knowledge of the pathophysiological mechanisms behind Alzheimer's disease and other cognitive disorders have suggested new approaches to treatment development. These advancements have been significantly aided by the use of animal models, which are also essential for the assessment of therapies. Various approaches as transgenic animal model, chemical models, brain injury are used. This review will presentAD pathophysiology and emphasize several Alzheimer like dementia causingchemical substances, transgenic animal model and stereotaxy in order to enhance our existing knowledge of their mechanism of AD induction, dose, and treatment duration.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Modelos Animais , Encéfalo , Degeneração Neural/patologia , Modelos Animais de Doenças
19.
Mol Neurodegener ; 18(1): 32, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173733

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with a loss of dopaminergic (DA) neurons. Despite symptomatic therapies, there is currently no disease-modifying treatment to halt neuronal loss in PD. A major hurdle for developing and testing such curative therapies results from the fact that most DA neurons are already lost at the time of the clinical diagnosis, rendering them inaccessible to therapy. Understanding the early pathological changes that precede Lewy body pathology (LBP) and cell loss in PD will likely support the identification of novel diagnostic and therapeutic strategies and help to differentiate LBP-dependent and -independent alterations. Several previous studies identified such specific molecular and cellular changes that occur prior to the appearance of Lewy bodies (LBs) in DA neurons, but a concise map of such early disease events is currently missing. METHODS: Here, we conducted a literature review to identify and discuss the results of previous studies that investigated cases with incidental Lewy body disease (iLBD), a presumed pathological precursor of PD. RESULTS: Collectively, our review demonstrates numerous cellular and molecular neuropathological changes occurring prior to the appearance of LBs in DA neurons. CONCLUSIONS: Our review provides the reader with a summary of early pathological events in PD that may support the identification of novel therapeutic and diagnostic targets and aid to the development of disease-modifying strategies in PD.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , Degeneração Neural/patologia , Neuropatologia , alfa-Sinucleína
20.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239942

RESUMO

Parkinson's disease (PD) often displays a strong unilateral predominance in arising symptoms. PD is correlated with dopamine neuron (DAN) degeneration in the substantia nigra pars compacta (SNPC), and in many patients, DANs appear to be affected more severely on one hemisphere than the other. The reason for this asymmetric onset is far from being understood. Drosophila melanogaster has proven its merit to model molecular and cellular aspects of the development of PD. However, the cellular hallmark of the asymmetric degeneration of DANs in PD has not yet been described in Drosophila. We ectopically express human α-synuclein (hα-syn) together with presynaptically targeted syt::HA in single DANs that innervate the Antler (ATL), a symmetric neuropil located in the dorsomedial protocerebrum. We find that expression of hα-syn in DANs innervating the ATL yields asymmetric depletion of synaptic connectivity. Our study represents the first example of unilateral predominance in an invertebrate model of PD and will pave the way to the investigation of unilateral predominance in the development of neurodegenerative diseases in the genetically versatile invertebrate model Drosophila.


Assuntos
Doença de Parkinson , Animais , Humanos , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Substância Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Degeneração Neural/patologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...